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Abstract  
 
The buy-and-hold way of investing has been taken as gospel by many professional investors 
since the 1960s. In recent years, however, it has come under harsh attack from both academics 
and practitioners who claim its ineffectiveness in the face of increasingly volatile markets. This 
research takes a theoretical approach to evaluating its effectiveness by invoking a powerful 
optimality theorem to gauge its effectiveness or, more specifically, its optimality level. In terms of 
optimality level, we determine how well it fares against three other popular strategies – lock-in, 
random-timing, and stop-loss. To make the concept of optimality level practically operational, we 
set up a two-factor model to depict the market environment and use Monte Carlo simulation to 
determine the optimality levels of these strategies. In terms of average optimality level, our results 
show that, in general, buy-and-hold strategies outperform the other three strategies in stable 
market environment, but they are outperformed by lock-in and stop-loss strategies in volatile 
market environment.  
 
Keywords: Buy-and-Hold, Optimality Level, Strategies, Two-Factor Model, Simulation  
 

 
 
1. Introduction  
 
A buy-and-hold strategy, simply stated, is a passive investment technique by which an investor 
buys stocks and holds them for a long time, regardless of market conditions. The term “buy and 
hold” appears to have been coined by Alexander (1961), who came up with the term in his analysis 
of stock price data. According to Fama (1965) and Black (1971), if a financial market is efficient 
and thus every security is fairly priced, then it is to the advantage of investors not to trade 
frequently and, instead, to buy a well-diversified portfolio and hold on to it. In fact, the initial use 
of buy-and-hold can be traced back to the landmark research of Cowles (1933), who tested the 
Dow Theory against a buy-and-hold strategy of buying and holding a well-diversified portfolio. His 
findings show that the Dow Theory would have yielded an annual return of 12 percent while the 
buy-and-hold strategy an annual return of 15.5 percent.  
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Since Cowles’ (1933)  research, many studies1 (Alexander, 1964; Fama, 1965; Fama and 

Blume, 1966; Jensen and Benington, 1970; Black, 1971; Sweeney, 1988; Siegel, 2002) have 
followed suit and used buy-and-hold strategy as a benchmark to investigate the behavior of stock 
prices, the effectiveness of investment strategies, the efficiency of stock markets, and so on. In 
the investment world, the buy-and-hold way of investing has been considered as gospel by many 
professional investors for nearly six decades. In his best-selling finance book, A Random Walk 
Down Wall Street, Burton Malkiel (2003, p. 15), an emeritus economics professor at Princeton 
University, hails outright the merit of buy-and-hold: “Investors would be far better off buying and 
holding an index fund than attempting to buy and sell individual securities or actively managed 
mutual funds. I boldly stated that buying and holding all the stocks in a broad stock-market 
average – as index funds do – was likely to outperform professionally managed funds whose high 
expense charges and large trading costs detract substantially from investment returns.”  

In recent years, buy-and-hold has been subjected to serious attack from both academics 
and practitioners (Becker and Seshadri, 2003; Bansal et al. 2004; Lo, 2012; Wallace, 2012; 
Zamansky, 2012; Minnucci, 2015), who claim the ineffectiveness of the strategy in the face of 
increasingly volatile markets. According to Andrew Lo (2012), a noted finance professor at MIT, 
buy-and-hold works only in stable financial environment, such as those from the 1940s to the 
early 2000s. However, the financial environment over the last 20 years has become so volatile 
that it renders the strategy ineffective. Lo (see Wallace, 2012) proclaims that “Buy-and-hold 
doesn’t work anymore. The volatility is too significant. Almost any asset can suddenly become 
much more risky.  Buying into a mutual fund and holding it for 10 years is no longer going to 
deliver the same kind of expected return that we saw over the course of the last seven decades, 
simply because of the nature of financial markets and how complex it’s gotten.” 

In terms of investment effectiveness, is buy-and-hold good enough to be qualified as a 
benchmark against which all other investment strategies are evaluated? In fact, rarely has buy-
and-hold itself been subjected to theoretical scrutiny to determine its qualification as a benchmark 
for other strategies. This research is intended to do just that. In this regard, we invoke a powerful 
optimality theorem (see Hirshleifer, 1970; Ingersoll, 1987; Dybvig, 1988) to investigate the 
effectiveness or, more specifically, the optimality of buy-and-hold. Simply put, this optimality 
theorem says that, in a complete and perfect market environment, an investment strategy is 
optimal if its terminal values are in reverse order of the terminal state price densities, where state 
price density is defined as state price divided by state probability. That said, given an arbitrary 

non-optimal strategy (say A) with a cost of 𝑌0
𝐴 at time 0, we rearrange the terminal values of A in 

reverse order of the terminal state price densities to obtain the corresponding optimal strategy 

(say O). We call the cost (say 𝑌0
𝑂) of strategy O at time 0 the amount of optimality or the optimality 

level of A. We will show in the next section that 𝑌0
𝑂 is less than or at most equal to 𝑌0

𝐴. In other 
words, given that strategies A and O both produce exactly the same distribution of terminal values, 
investors pay less with strategy O than with strategy A. In this study, we set the cost of strategy A 
at $1 at time 0 and thus calibrate its optimality level to have a value from 0 to 1, where 0 stands 
for nil optimality and 1 absolute optimality. That is, strategies with larger optimality level have 
greater amount of optimality. We use the following example to illustrate the meaning of the 
optimality level.  

Consider a one-period strategy A. Let there be three equally probable states 1, 2, and 3 
at time 1 with state 1 price = 0.1, state 2 price = 0.15, and state 3 price = 0.2. Then, the state 
price density is 0.3 for state 1, 0.45 for state 2, and 0.6 for state 3. At time 1, suppose strategy A 
is that its value is 1 if state 1 occurs, 2 if state 2 occurs, and 3 if state 3 occurs. Then the cost of 
A at time 0 is (0.1 x 1) + (0.15 x 2) + (0.2 x 3) = 1.0. If we rearrange the three values of A at time 
1 in reverse order of the three state price densities, then we obtain the corresponding optimal 
strategy O whose value is 3 if state 1 occurs, 2 if state 2 occurs, and 1 if state 3 occurs. The cost 
of O at time 0 is (0.1 x 3) + (0.15 x 2) + (0.2 x 1) = 0.8. That is, the optimality level of A is 0.8, 
which means strategy A is only 80% optimal. Table 1 gives a visual presentation of strategy A and 
the corresponding optimal strategy O. 
 

 
1 See Bernstein (1992) for a thorough discussion of the contributions of these studies to financial markets. 
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Table 1. Strategy A and the corresponding optimal strategy O 

State Probability State price 
State price 

density 
Value of A Value of O 

1 
1

3
 0.10 0.30 1 3 

2 
1

3
 0.15 0.45 2 2 

3 
1

3
 0.20 0.60 3 1 

 
Given that buy-and-hold involves only one buy trade at time 0 and one sell trade at time 

T, one major advantage of the strategy is that it minimizes transaction costs. In this study, we test 
three other popular strategies (i.e., lock-in, random-timing, and stop-loss), each of which involves 
only a small number of trades, to determine how each of them measures up to buy-and-hold in 
terms of optimality level. To make the concept of optimality level practically operational, we set up 
a two-factor model to depict the dynamic and stochastic nature of the market environment – one 
factor for the price of a portfolio of risky securities and one factor for the spot interest rate. We 
employ Monte Carlo simulation to generate 100,000 simulation runs for each strategy and then 
determine the optimality levels of these strategies.  

The rest of the paper is organized as follows: Section 2 gives the theoretical basis for the 
optimality level. In Section 3, we formulate a two-factor model to depict the market environment 
and develop a multi-period formula for the terminal state price density for use in computing 
optimality level. Section 4 describes the four strategies. Section 5 outlines our simulation design 
and presents our simulation results. Section 6 concludes this research.  
 
2. Theoretical basis for optimality level  
 
An investment strategy is a financial asset whose values over time can be expressed simply as a 

value vector. In symbols, we can express the values of a strategy in a multi-period setting as 𝑌
~

=

[𝑌1

~

, 𝑌2

~

, . . . , 𝑌𝑇

~

], where each 𝑌𝑡

~

 (t = 1, 2, …, T) is random because its value at time t depends on 

which of the states occurs at time t. In a complete and perfect market with m mutually exclusive 
and exhaustive states at terminal time T, a strategy can be expressed as a linear combination of 
the m state securities and thus the cost 𝑌0 of a strategy at time 0 can be written as  
 

                                                      𝑌0 = ∑ 𝑠0𝑇(𝑖)𝑌𝑇(𝑖)𝑚
𝑖=1                                                    (1) 

 
where 𝑠0𝑇(𝑖) is the state price for state i and 𝑌𝑇(𝑖) is the terminal value of the strategy at time T in 

state i, where i = 1, 2, …, m. Let 𝑝0𝑇(𝑖) be the probability of state i and 𝑑0𝑇(𝑖) =
𝑠0𝑇(𝑖)

𝑝0𝑇(𝑖)
 be the state 

price density for state i. Then the cost of a strategy in (1) can also be written as  
 

𝑌0 = ∑ (
𝑠0𝑇(𝑖)

𝑝0𝑇(𝑖)
𝑌𝑇(𝑖))𝑚

𝑖=1 𝑝0𝑇(𝑖) = ∑ (𝑑0𝑇(𝑖)𝑌𝑇(𝑖))𝑚
𝑖=1 𝑝0𝑇(𝑖) = 𝐸0

𝑃 [𝑑
~

0𝑇𝑌𝑇

~

]               (2) 

 
Suppose an investor begins with a wealth 𝑌0 at time 0 and has a utility function 𝑈(⋅), which 

is increasing and strictly concave. He wants to maximize a von Neumann-Morgenstern utility 
function subject to his wealth constraint. In this situation, to maximize ∑ 𝑝0𝑇(𝑖)𝑈(𝑌𝑇(𝑖))𝑚

𝑖=1  subject 

to ∑ 𝑠0𝑇(𝑖)𝑌𝑇(𝑖) = 𝑌0
𝑚
𝑖=1 , we use the Lagrange multiplier method as follows:  

 
                                     𝐿 = ∑ 𝑝0𝑇(𝑖)𝑈(𝑌𝑇(𝑖))𝑚

𝑖=1 − 𝜆[∑ 𝑠0𝑇(𝑖)𝑌𝑇(𝑖)𝑚
𝑖=1 − 𝑌0]                              (3) 

 
where 𝜆  is the Lagrange multiplier. To obtain his optimal choice of 𝑌𝑇 ’s, we take the partial 

derivatives with respect to 𝑌𝑇(1), 𝑌𝑇(2), …, 𝑌𝑇(𝑚).  

                                                
𝜕𝐿

𝜕𝑌𝑇(𝑖)
= 𝑝0𝑇(𝑖)

𝜕𝑈(𝑌𝑇(𝑖))

𝜕𝑌𝑇(𝑖)
− 𝜆𝑠0𝑇(𝑖) = 0                                      (4) 



 
 
 

Liu & Kung / Eurasian Journal of Business and Management, 11(1), 2023, 32-45 
 
 

 

35 

 

 

We have 
𝜕𝑈(𝑌𝑇(𝑖))

𝜕𝑌𝑇(𝑖)
= 𝜆

𝑠0𝑇(𝑖)

𝑝0𝑇(𝑖)
= 𝜆𝑑0𝑇(𝑖), where 𝑑0𝑇(𝑖) is the state price density for state i at 

terminal time T. Since 𝑑0𝑇 > 0, 
𝜕𝑈

𝜕𝑌𝑇
> 0, and 

𝜕2𝑈

𝜕𝑌𝑇
2 < 0, the terminal value 𝑌𝑇 is non-increasing in the 

terminal state price density 𝑑0𝑇. That is, a strategy is optimal only if 𝑑0𝑇(𝑘) > 𝑑0𝑇(𝑙) implies 𝑌𝑇(𝑘) 
< 𝑌𝑇(𝑙), for any two terminal states k and l, where 1 ≤ 𝑘 < 𝑙 ≤ 𝑚.  

Using this inverse relation between terminal value and terminal state price density, we 
can quantify the amount of optimality of a strategy. Suppose an arbitrary non-optimal strategy A 

has m pairs of observations for its terminal value and state price density: [𝑌𝑇
𝐴(1), 𝑑0𝑇(1)] , 

[𝑌𝑇
𝐴(2), 𝑑0𝑇(2)], …, [𝑌𝑇

𝐴(𝑚), 𝑑0𝑇(𝑚)]. If we rearrange 𝑌𝑇
𝐴’s in reverse order of 𝑑0𝑇’s to obtain the 

corresponding strategy (say O), then strategy O is optimal because 𝑑0𝑇(𝑘) > 𝑑0𝑇(𝑙) implies 𝑌𝑇
𝑂(𝑘) 

< 𝑌𝑇
𝑂(𝑙) , for any two terminal states k and l, where 1 ≤ 𝑘 < 𝑙 ≤ 𝑚 . Hence, given m equally 

probable terminal states, the costs of strategies A and O at time 0 are respectively 𝑌0
𝐴 =

1

𝑚
∑ 𝑑0𝑇(𝑖)𝑌𝑇

𝐴(𝑖)𝑚
𝑖=1   and 𝑌0

𝑂 =
1

𝑚
∑ 𝑑0𝑇(𝑖)𝑌𝑇

𝑂(𝑖)𝑚
𝑖=1  . In other words, 𝑌0

𝑂  is the optimality level of 

strategy A. 
Now we show that the cost of strategy A is larger than that of the corresponding optimal 

strategy O. That is, 𝑌0
𝐴 > 𝑌0

𝑂. Suppose strategy A has only two (say k and l) of the m equally 

probable states where 𝑑0𝑇(𝑘) > 𝑑0𝑇(𝑙)  but 𝑌𝑇(𝑘)  > 𝑌𝑇(𝑙) . If we switch 𝑌𝑇(𝑘)  and 𝑌𝑇(𝑙)  between 
terminal states k and l, then we have  
 

    𝑌0
𝐴 − 𝑌0

𝑂 = [𝑠0𝑇(𝑘)𝑌𝑇(𝑘) + 𝑠0𝑇(𝑙)𝑌𝑇(𝑙)] – [𝑠0𝑇(𝑘)𝑌𝑇(𝑙) + 𝑠0𝑇(𝑙)𝑌𝑇(𝑘)] 
                           = [𝑌𝑇(𝑘) − 𝑌𝑇(𝑙)][𝑠0𝑇(𝑘) − 𝑠0𝑇(𝑙)] 

                                                   = 
1

𝑚
[𝑌𝑇(𝑘) − 𝑌𝑇(𝑙)][𝑑0𝑇(𝑘) − 𝑑0𝑇(𝑙)] > 0                                   (5) 

 

where 𝑠0𝑇(𝑖) = 𝑑0𝑇(𝑖)𝑝0𝑇(𝑖) = 
𝑑0𝑇(𝑖)

𝑚
 and i = k or l. 

 
3. Model setup 
 
In this study, we assume that the market environment is governed by a two-factor model – one 
factor for the price of a portfolio of risky securities (e.g., a stock market index) and one factor for 

the spot interest rate. We use a lognormal diffusion process2 (see Samuelson, 1965; Black and 

Scholes, 1973) to depict the price 𝑆(𝑡) of the portfolio and an Ornstein-Uhlenbeck (O-U) process 
(see Uhlenbeck and Ornstein, 1930; Bhattacharya and Waymire, 2009; Kung and Wu, 2013) to 
depict the spot interest rate 𝑟(𝑡). 
 
                                                    𝑑𝑆(𝑡) = 𝛼𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑊(𝑡)                                      (6) 
 
                                                    𝑑𝑟(𝑡) = 𝜃(𝜇 − 𝑟(𝑡))𝑑𝑡 + 𝜎𝑟𝑑𝑊𝑟(𝑡)                                    (7) 
 
 
where 𝛼 is the expected return on the portfolio, 𝜎 is the volatility of the portfolio, 𝜎𝑟 is the volatility 
of the spot interest rate, 𝑊(𝑡)  and 𝑊𝑟(𝑡)  are standard Wiener processes, and the correlation 
between the two Wiener processes is 𝜌. In (7), the spot rate has a tendency to revert to its long-
term mean value 𝜇 at a rate of 𝜃. This mean-reverting phenomenon is evident for interest rates. 
When interest rates are high, the demand for funds will decrease and eventually they will fall. 
When interest rates are low, the demand for funds will increase and eventually they will rise.  

With (6) and (7), we now derive the terminal state price density for use in computing the 
optimality level. We convert the random term on the right-hand side of (6) to one without 𝑆(𝑡). 

Setting 𝑋(𝑡) = 𝑙𝑛 𝑆 (𝑡) and applying Ito’s theorem, the diffusion process for 𝑋(𝑡) is 

 
2 The model in (6), better known as the geometric Brownian motion, to depict the price 𝑆(𝑡) was developed 
by Samuelson (1965).  
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                                                     𝑑𝑋(𝑡) = (𝛼 −
𝜎2

2
) 𝑑𝑡 + 𝜎𝑑𝑊(𝑡)                                         (8) 

 
The corresponding risk-neutral diffusion processes for 𝑋(𝑡) and 𝑟(𝑡) in (8) and (7) are 

 

𝑑𝑋(𝑡) = (𝑟(𝑡) −
𝜎2

2
) 𝑑𝑡 + 𝜎𝑑𝑊(𝑡)                          (9) 

 

𝑑𝑟(𝑡) = 𝜃 (𝜇 −
𝛾𝜎𝑟

𝜃
− 𝑟(𝑡)) 𝑑𝑡 + 𝜎𝑟𝑑𝑊𝑟(𝑡)               (10) 

 
where 𝛾 is the market price of interest rate risk. The diffusion processes for 𝑋(𝑡) and 𝑟(𝑡) in (8) 
and (7) can be written in discrete form as follows:  
 

                                          𝑋(𝑡 + 𝛥𝑡) = 𝑋(𝑡) + (𝛼 −
𝜎2

2
) 𝛥𝑡 + 𝜎𝜔√𝛥𝑡                (11) 

 

                                          𝑟(𝑡 + 𝛥𝑡) = 𝑟(𝑡) + 𝜃(𝜇 − 𝑟(𝑡))𝛥𝑡 + 𝜎𝑟𝜔𝑟√𝛥𝑡             (12) 
 
where 𝛥𝑡 = 𝑡𝑗 − 𝑡𝑗−1 (j = 1, 2, …, n), and 𝜔 and 𝜔𝑟 are two correlated standard normal variables. 

These two variables are obtained by drawing two independent values 𝜀1 and 𝜀2 from a standard 

normal distribution and letting 𝜔  = 𝜀1  and 𝜔𝑟  = 𝜀1𝜌 + 𝜀2√1 − 𝜌2 , where 𝜌  is the correlation 

between 𝜔 and 𝜔𝑟.  

Similarly, the risk-neutral diffusion processes for 𝑋(𝑡)  and 𝑟(𝑡)  in (9) and (10) can be 
written in discrete form as follows:  
 

𝑋(𝑡 + 𝛥𝑡) = 𝑋(𝑡) + (𝑟(𝑡) −
𝜎2

2
) 𝛥𝑡 + 𝜎𝜔√𝛥𝑡                        (13) 

 

𝑟(𝑡 + 𝛥𝑡) = 𝑟(𝑡) + 𝜃 (𝜇 −
𝛾𝜎𝑟

𝜃
− 𝑟(𝑡)) 𝛥𝑡 + 𝜎𝑟𝜔𝑟√𝛥𝑡            (14) 

 

Given 𝑋(𝑡) and 𝑟(𝑡) in (11) and (12), we set 𝑍𝑗 = [
𝑋(𝑡𝑗)

𝑟(𝑡𝑗)
] and 𝛼𝑃 =  [

𝛼𝑋
𝑃

𝛼𝑟
𝑃] = [

𝐸𝑃(𝑋(𝑡𝑗))

𝐸𝑃(𝑟(𝑡𝑗))
] = 

[
𝑋(𝑡𝑗−1) + (𝛼 −

𝜎2

2
)) 𝛥𝑡

𝑟(𝑡𝑗−1) + 𝜃(𝜇 − 𝑟(𝑡𝑗−1))𝛥𝑡
]. The variance-covariance (V-C) matrix and its inverse V-C matrix are 

 

𝛴 = 𝛥𝑡 [
𝜎2 𝜌𝜎𝜎𝑟

𝜌𝜎𝜎𝑟 𝜎𝑟
2 ] and 𝛴−1 =

1

𝛥𝑡𝜎2𝜎𝑟
2(1−𝜌2)

[
𝜎𝑟

2 −𝜌𝜎𝜎𝑟

−𝜌𝜎𝜎𝑟 𝜎2 ]            (15) 

 
That is, under the objective probability 𝑃 , 𝑍𝑗  is distributed as 𝑁2(𝛼𝑃, 𝛴) . Hence, the 

objective transition probability density 𝑝(𝑗−1)𝑗 = 𝑝(𝑗−1)𝑗(𝑍𝑗)  over the time period 𝛥𝑡 = 𝑡𝑗 − 𝑡𝑗−1 

(where j = 1, 2, …, n) is  
 

                                           𝑝(𝑗−1)𝑗 =
1

√(2𝜋)2|𝛴|
𝑒𝑥𝑝 [−

(𝑍𝑗−𝛼𝑃)𝑇𝛴−1(𝑍𝑗−𝛼𝑃)

2
]             (16) 

 
where (𝑍𝑗 − 𝛼𝑃)𝑇𝛴−1(𝑍𝑗 − 𝛼𝑃) equals 

 

1

1−𝜌2 [(
𝑋(𝑡𝑗)−𝛼𝑋

𝑃

𝜎
)

2

+ (
𝑟(𝑡𝑗)−𝛼𝑟

𝑃

𝜎𝑟
)

2

− 2𝜌 (
𝑋(𝑡𝑗)−𝛼𝑋

𝑃

𝜎
) (

𝑟(𝑡𝑗)−𝛼𝑟
𝑃

𝜎𝑟
)]           (17) 

 
From the stationary independent increment assumption of Brownian motion, the joint 
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transition probability density function under the objective probability P is  
 

                                   ∏ 𝑝(𝑗−1)𝑗 =
1

(2𝜋)𝑛√|𝛴|𝑛
𝑒𝑥𝑝 [− ∑

(𝑍𝑗−𝛼𝑃)
𝑇

𝛴−1(𝑍𝑗−𝛼𝑃)

2

𝑛
𝑗=1 ]𝑛

𝑗=1            (18) 

 

Given 𝑋(𝑡)  and 𝑟(𝑡)  in (13) and (14), we set 𝛼𝑄  = [
𝛼𝑋

𝑄

𝛼𝑟
𝑄] = [

𝐸𝑄(𝑋(𝑡𝑗))

𝐸𝑄(𝑟(𝑡𝑗))
]  = 

[
𝑋(𝑡𝑗−1) + (𝑟(𝑡𝑗−1) −

𝜎2

2
)) 𝛥𝑡

𝑟(𝑡𝑗−1) + 𝜃 (𝜇 −
𝛾𝜎𝑟

𝜃
− 𝑟(𝑡𝑗−1)) 𝛥𝑡

]. That is, under the risk-neutral probability 𝑄, 𝑍𝑗 is distributed 

as 𝑁2(𝛼𝑄, 𝛴) . Hence, the risk-neutral transition probability density 𝑞(𝑗−1)𝑗 = 𝑞(𝑗−1)𝑗(𝑍𝑗)  over the 

time interval 𝛥𝑡 = 𝑡𝑗 − 𝑡𝑗−1 (where j = 1, 2, …, n) is  

 

𝑞(𝑗−1)𝑗 =
1

√(2𝜋)2|𝛴|
𝑒𝑥𝑝 [−

(𝑍𝑗−𝛼𝑄)𝑇𝛴−1(𝑍𝑗−𝛼𝑄)

2
]               (19) 

 
where (𝑍𝑗 − 𝛼𝑄)𝑇𝛴−1(𝑍𝑗 − 𝛼𝑄) equals 

 

1

1−𝜌2 [(
𝑋(𝑡𝑗)−𝛼𝑋

𝑄

𝜎
)

2

+ (
𝑟(𝑡𝑗)−𝛼𝑟

𝑄

𝜎𝑟
)

2

− 2𝜌 (
𝑋(𝑡𝑗)−𝛼𝑋

𝑄

𝜎
) (

𝑟(𝑡𝑗)−𝛼𝑟
𝑄

𝜎𝑟
)]          (20) 

 
The joint transition probability density function under the risk-neutral probability Q is  

 

                                   ∏ 𝑞(𝑗−1)𝑗 =
1

(2𝜋)𝑛√|𝛴|𝑛
𝑒𝑥𝑝 [− ∑

(𝑍𝑗−𝛼𝑄)
𝑇

𝛴−1(𝑍𝑗−𝛼𝑄)

2

𝑛
𝑗=1 ]𝑛

𝑗=1         (21) 

 
Let P and Q be equivalent probability measures. For every ordered time steps 0 ≡ 𝑡0 <

𝑡1 <. . . < 𝑡𝑛 ≡ 𝑇, the Radon-Nikodym derivative 
𝑑𝑄

𝑑𝑃
 up to terminal time T is defined to be the limit 

of the likelihood ratio  
 

                                                      
𝑑𝑄

𝑑𝑃
= lim

𝑛→∞

∏ 𝑞(𝑗−1)𝑗
𝑛
𝑗=1

∏ 𝑝(𝑗−1)𝑗
𝑛
𝑗=1

                      (22) 

 

For small time period 𝛥𝑡 = 𝑡𝑗 − 𝑡𝑗−1 (j = 1, 2,…, n), the Radon-Nikodym derivative 
𝑑𝑄

𝑑𝑃
 up 

to terminal time T can be written in discrete form as  
 

∏ (
𝑞(𝑗−1)𝑗

𝑝(𝑗−1)𝑗
)𝑛

𝑗=1 = exp [
1

2
∑ {(𝑍𝑗 − 𝛼𝑃)

𝑇
𝛴−1(𝑍𝑗 − 𝛼𝑃) − (𝑍𝑗 − 𝛼𝑄)

𝑇
𝛴−1(𝑍𝑗 − 𝛼𝑄)}𝑛

𝑗=1 ]   (23) 

 
 
 

Hence, the terminal state price density for a strategy under the O-U process from time 
0 ≡ 𝑡0 to time 𝑇 ≡ 𝑡𝑛 is  
 

𝛷0𝑇 = ∏ 𝛷(𝑗−1)𝑗 =𝑛
𝑗=1 ∏

(
𝑞(𝑗−1)𝑗

𝑝(𝑗−1)𝑗
)

1+𝑟(𝑡𝑗−1)𝛥𝑡

𝑛
𝑗=1                   (24) 
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4. The four strategies  
 
Besides buy-and-hold strategies, we also investigate the optimality of lock-in, random-timing, and 
stop-loss strategies. We assume the investor starts out with $1 ($1 can stand for a million or a 
billion dollars) for investment at initial time 0. For each of the four strategies, the investor will 
allocate his funds between a risky portfolio (which can be an index fund) and a zero-coupon bond. 
The price 𝐵[⋅] of a zero-coupon bond at time 𝑡𝑗 paying $1 at terminal time T under the Ornstein-

Uhlenbeck process is 
 

                                  𝐵[𝑟(𝑡𝑗), 𝑡𝑗 , 𝑇] = 𝑒𝑥𝑝 {𝐷[𝐶 − 𝑟(𝑡𝑗)] − 𝐶[𝑇 − 𝑡𝑗] −
𝜎𝑟

2𝐷2

4𝜃
}             (25) 

 

where 𝐶 = 𝜇 +
𝛾𝜎𝑟

𝜃
−

𝜎𝑟
2

2𝜃2 and 𝐷 =
1−𝑒𝑥𝑝[−𝜃(𝑇−𝑡𝑗)]

𝜃
.  

 
With a buy-and-hold strategy, the investor invests a fraction (say a) of his initial amount 

of $1 in the risky portfolio at time 0 and the remaining $1 – a in a zero-coupon bond to mature at 
time T. He will hold the portfolio until time T, at which time his wealth is the sum of his holding of 
the portfolio and that of the zero-coupon bond. In respect of the portfolio, the strategy involves a 
buy trade at time 0 and a sell trade at time T. For implementation, the fraction a is set at 0.8, 0.9, 
and 1.0. For example, if a is set at 0.8, he will invest at time 0 $0.8 in the portfolio and $0.2 in a 
zero-coupon bond to mature at time T. 

With a lock-in strategy, the investor invests his initial amount of $1 in the risky portfolio at 
time 0 and holds it until its value goes up to a limit value (say b) or above, at which point he 
switches from the portfolio to a zero-coupon bond to mature at time T. In respect of the risky 
portfolio, the strategy involves a buy trade at time 0 and a sell trade at some time between time 0 
and time T. For implementation, the limit value b is set at 1.10, 1.20, and 1.30 of the initial amount 
of $1. For example, if b is set at 1.20, he will switch from the portfolio to the zero-coupon bond 
when its value goes up to $1.20 or above. As long as its value is less than $1.20, he will continue 
to hold the portfolio. 

With a random-timing strategy, the investor will hold the portfolio for a fraction (say c) of 
his investment horizon [0,T] and a zero-coupon bond for the remaining fraction 1 – c of [0,T]. For 
simplicity, we divide [0,T] into 10 equal intervals. Accordingly, he will hold the portfolio in any e 

intervals such that 𝑐 =
𝑒

10
 (where 0 < e < 10) and a zero-coupon bond in the remaining 10 - e 

intervals such that 1 − 𝑐 =
10−𝑒

10
. The choice between the portfolio and the zero-coupon bond at 

the beginning of each interval is based on the outcome of a toss of an unbiased coin. For 
implementation, the fraction c is set at 0.4, 0.6, and 0.8. Suppose T = 5 years and c = 0.4, then 
the five-year horizon is divided into ten 6-month intervals and the investor will hold the portfolio in 
four (0.4 x 10) randomly selected intervals and the bond in the remaining six intervals. For 
example, a possible random ordering of four intervals for the portfolio and six intervals for the 
bond is P-B-B-B-P-P-B-B-P-B, where P is the interval for the portfolio and B is the interval for the 
bond. Given that, in respect of the portfolio, we have a buy trade at the start of interval 1, then a 
sell trade at the end of interval 1, then a buy trade at the start of interval 5, then a sell trade at the 
end of interval 6, then a buy trade at the start of interval 9, and finally a sell trade at the end of 
interval 9. The strategy involves a total of six buy-sell trades as it evolves through the investment 
horizon. 

With a stop-loss strategy, the investor invests $1 in the risky portfolio at time 0 and holds 
it until its value drops to a limit value (say d) or below, at which point he switches from the portfolio 
to a zero-coupon bond to mature at time T. Hence, the strategy involves a buy trade at time 0 and 
a sell trade at some time between time 0 and time T. For implementation, the limit value d is set 
at 0.7, 0.8, and 0.9 of the initial amount of $1. For example, if d is set at 0.8, he will switch from 
the portfolio to a zero-coupon bond when its value drops to $0.8 or below. As long as its value is 
greater than $0.8, the investor will continue to hold the portfolio.  
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5. Simulation design and results  
5.1. Simulation design 
 
To determine the optimality levels of the four strategies, we use a value of 0.2 for the 𝜎 in (6) to 

depict a stable market environment3 and a value of 0.4 to depict a volatile market environment, 

supplemented with either 0.01 or 0.02 for the 𝜎𝑟 in (7). These values for 𝜎 and 𝜎𝑟 are reasonable 

in practical sense. In respect of 𝜎, the volatility of the S&P 500 Index, for example, is close to 0.2 
over the ten years from 2006 to 2015, and close to 0.4 over the turbulent period from September 
2008 to December 2008. In respect of 𝜎𝑟 , the volatility of U.S. short-term interest rates, for 
example, fluctuates mostly between 0.01 and 0.02. Accordingly, we use the following values (see 
Hull, 2015) for the five parameters in (6) and (7): 𝛼 = 0.08 and 0.10, 𝜎 = 0.2 and 0.4, 𝜎𝑟 = 0.01 
and 0.02, 𝜃 = 0.1, 𝜇 = 0.06, and 𝜌 = -0.2. Altogether, we have eight (2 values for 𝛼, 2 for 𝜎, and 2 

for 𝜎𝑟 ) different scenarios for the market environment, which should be large enough to 
encompass a wide range of possible market conditions. We will determine the optimality levels of 
the four strategies with the investment horizon being set at 0.5 year, 1 year, 3 years, 5 years, and 
10 years.  

To ensure a high degree of precision, we simulate 100,000 independent paths for each 
strategy to obtain 100,000 pairs of observations for terminal value and terminal state price density: 
[𝑌𝑇(1), 𝑑0𝑇(1)] , [𝑌𝑇(2), 𝑑0𝑇(2)] , …, [𝑌𝑇(100000), 𝑑0𝑇(100000)] . With the 100,000 pairs of 
observations, we rearrange the terminal values in reverse order of the terminal state price 

densities to obtain the corresponding optimal strategy O where 𝑑0𝑇(𝑘) > 𝑑0𝑇(𝑙) implies 𝑌𝑇
𝑂(𝑘) <

𝑌𝑇
𝑂(𝑙) for any two states k and l, where 1 ≦ k, l ≦ 100,000 terminal states. Hence, the optimality 

level of a strategy at time 0 is  
 

                                                 𝑉0
𝑂 =

1

100000
∑ 𝑑0𝑇(𝑖)𝑌𝑇

𝑂(𝑖)100000
𝑖=1                    (26) 

 
5.2. Simulation results 
 
Tables 2 through 5 report the optimality levels of the four strategies under eight different market 
conditions. The upper part of each table is for 𝛼 = 0.08 and the lower part of each table is for 𝛼 = 
0.10. Note that the optimality level of a strategy has a value between 0 and 1 such that strategies 
with larger optimality levels are more effective and thus ranked higher than those with smaller 
optimality levels.  

Regardless of market conditions, the size of the investment horizon has an adverse 
impact on their optimality levels. Specifically, their optimality levels become smaller as investment 
horizon T is longer. In addition, the value of 𝛼, the expected return on the risky portfolio, in (6) has 
a significant effect on the optimality levels of buy-and-hold strategies. In general, the larger the 
value of 𝛼, the larger their optimality levels. Given that this study is about the optimality of buy-
and-hold strategies, we focus on how well they fare against the other three strategies based on 
their average optimality levels.  

Table 2 shows the optimality levels of the four strategies with 𝜎 = 0.2 and 𝜎𝑟 = 0.01, which 
depicts a stable securities market with mild interest rate. In such a market environment, buy-and-
hold strategies, in general, excel the other three strategies in terms of average optimality level 
(except for the case where T = 0.5 year and 𝛼 = 0.08), particularly when 𝛼 = 0.10. Between lock-
in and stop-loss, the former performs slightly better than the latter when 𝛼 = 0.08, but the latter 
performs obviously better than the former when 𝛼 = 0.10. Random-timing strategies are ranked 

at the bottom. For example, when T = 5 years and 𝛼 = 0.10, the average optimality level is 0.9781 
for buy-and-hold, 0.9664 for stop-loss, 0.9510 for lock-in, and 0.9469 for random-timing.  
 
 
 
 

 
3 A stable market environment means a market with reasonable degree of volatility. 
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Table 2. Optimality levels in a stable securities market with mild interest rate 

 Strategy Limit 0.5-Year 1-Year 3-Year 5-Year 10-Year 

𝛼 = 0.08  

 

Buy-and-

Hold     

0.80   0.9961    0.9935    0.9794 0.9658    0.9283 

0.90     0.9956 0.9927    0.9765    0.9608    0.9180 

1.00     0.9961    0.9919    0.9739    0.9567    0.9132 

Average 0.9959    0.9927    0.9766    0.9611    0.9198 

Lock-In     

1.10 0.9964    0.9922    0.9760    0.9601    0.9201 

1.20 0.9965    0.9925    0.9740    0.9570    0.9124 

1.30     0.9964    0.9925 0.9741    0.9568    0.9116 

Average 0.9964    0.9924    0.9747    0.9580    0.9147 

Random-

Timing 

0.40      0.9946    0.9896    0.9693    0.9479    0.9005 

0.60      0.9947    0.9895    0.9687    0.9471    0.8974 

0.80      0.9951    0.9899    0.9703    0.9495    0.8999 

Average 0.9948    0.9897 0.9694    0.9482    0.8992 

Stop-

Loss        

0.70      0.9953    0.9911    0.9753    0.9597    0.9119 

0.80      0.9955    0.9915    0.9758    0.9599    0.9121 

0.90      0.9961    0.9923    0.975 0.9605    0.9132 

Average 0.9956    0.9916    0.9757    0.9600    0.9124 

𝛼 = 0.10      

Buy-and-

Hold   

0.80    0.9977    0.9959    0.9885    0.9810    0.9607 

0.90 0.9974    0.9953    0.9868    0.9780    0.9546 

1.00     0.9978    0.9952    0.9854    0.9755    0.9507 

Average 0.9977    0.9955 0.9869 0.9781    0.9553 

Lock-In     

1.10     0.9970    0.9923    0.9720    0.9488    0.8936 

1.20     0.9978 0.9943 0.9735    0.9516    0.8932 

1.30 0.9978    0.9950    0.9746    0.9526    0.8944 

Average 0.9975    0.9939 0.9734    0.9510    0.8937 

Random-

Timing 

0.40      0.9935    0.9874    0.9629    0.9368    0.8804 

     0.60      0.9945    0.9891    0.9673    0.9453    0.8970 

0.80      0.9959    0.9916    0.9751    0.9586    0.9189 

Average 0.9946    0.9894    0.9684    0.9469    0.8988 

Stop-

Loss        

0.70 0.9975    0.9951    0.9847    0.9724    0.9322 

0.80      0.9975    0.9952    0.9833    0.9694    0.9243 

0.90      0.9976    0.9941    0.9763    0.9572    0.9020 

Average 0.9975    0.9948    0.9814    0.9664    0.9195 

 
Table 3 shows their optimality levels with 𝜎 = 0.4 and 𝜎𝑟 = 0.01, which depicts a volatile 

securities market accompanied by mild interest rate. In such a volatile market environment, the 
value of 𝛼 plays an important role in determining the ranking of buy-and-hold in relation to the 

other three. Buy-and-hold strategies rank behind both lock-in and stop-loss strategies when 𝛼 = 
0.08, but buy-and-hold strategies rank first, across the board, when 𝛼 = 0.10. For example, given 
T = 10 years, the average optimality level, in decreasing order, is 0.9316 for lock-in, 0.9178 for 
stop-loss, 0.8921 for buy-and-hold, and 0.8739 for random-timing when 𝛼 = 0.08; whereas the 
average optimality level is 0.9502 for buy-and-hold, 0.9301 for stop-loss, 0.9187 for lock-in, and 
0.8946 for random-timing when 𝛼 = 0.10. 
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Table 3. Optimality levels in a volatile securities market with mild interest rate 

 Strategy Limit 0.5-Year 1-Year 3-Year 5-Year 10-Year 

𝛼 = 0.08  

 

Buy-and-

Hold     

0.80   0.9960    0.9925    0.9763    0.9584    0.8997 

0.90     0.9955    0.9915    0.9730    0.9525    0.8862 

1.00     0.9960    0.9908    0.9703    0.9490    0.8904 

Average 0.9958    0.9916    0.9732    0.9533    0.8921 

Lock-In     

1.10 0.9963    0.9927    0.9804    0.9699     0.9428 

1.20 0.9965    0.9923    0.9760    0.9626    0.9289 

1.30     0.9965    0.9922    0.9748    0.9601    0.9231 

Average 0.9964    0.9924    0.9770    0.9642    0.9316 

Random-

Timing 

0.40      0.9946    0.9893    0.9671    0.9428    0.8808 

0.60      0.9946    0.9892    0.9663    0.9401    0.8710 

0.80      0.9950    0.9896    0.9672    0.9411    0.8698 

Average 0.9947    0.9894    0.9669    0.9413    0.8739 

Stop-

Loss        

0.70      0.9959    0.9920    0.9750    0.9591    0.9064 

0.80      0.9961    0.9923    0.9755    0.9612    0.9124 

0.90      0.9965    0.9930 0.9798    0.9706    0.9347 

Average 0.9962    0.9924    0.9767    0.9636    0.9178 

𝛼 = 0.10 

Buy-and-

Hold   

0.80    0.9977    0.9959    0.9878    0.9795    0.9547 

0.90 0.9974    0.9953    0.9860    0.9763    0.9478 

1.00     0.9978    0.9950    0.9841    0.9742    0.9482 

Average 0.9976    0.9954    0.9860    0.9767    0.9502  

Lock-In     

1.10     0.9964    0.9922    0.9770    0.9626    0.9283 

1.20     0.9971    0.9928    0.9740    0.9574    0.9158 

1.30 0.9973    0.9930    0.9736    0.9563    0.9121 

Average 0.9969    0.9928    0.9749    0.9587    0.9187 

Random-

Timing 

0.40      0.9935    0.9875    0.9626    0.9371    0.8790 

     0.60      0.9945    0.9892    0.9672    0.9445    0.8914 

0.80      0.9959    0.9916    0.9746    0.9573    0.9134 

Average 0.9946    0.9894    0.9681    0.9463    0.8946 

Stop-

Loss        

0.70 0.9977    0.9951    0.9819    0.9697    0.9299 

0.80      0.9977    0.9947   0.9805    0.9683    0.9288 

0.90      0.9973    0.9940    0.9794    0.9682    0.9317 

Average 0.9976    0.9946    0.9806    0.9687    0.9301 

 
Table 4 shows the optimality levels with 𝜎 = 0.2 and 𝜎𝑟 = 0.02, which represents a stable 

securities market agitated by volatile interest rate. In such a market environment, the value of 𝛼 
makes a difference in ranking when we compare buy-and-hold with the other three. As pointed 
out above, the larger the value of 𝛼, the larger the optimality levels of buy-and-hold strategies. 
When 𝛼 = 0.08, buy-and-hold strategies rank behind lock-in strategies and, in three out of the five 
investment horizons, behind stop-loss strategies. When 𝛼 = 0.10, buy-and-hold strategies rank 
first in four out of the five investment horizons, trailing only behind lock-in when T = 0.5 year. 
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Table 4. Optimality levels in a stable securities market with volatile interest rate 

 Strategy Limit 0.5-Year 1-Year 3-Year 5-Year 10-Year 

𝛼 = 0.08  

 

Buy-and-

Hold     

0.80   0.9887    0.9791    0.9412    0.9061    0.8148 

0.90     0.9872    0.9763    0.9329    0.8924    0.7894 

1.00     0.9878    0.9730    0.9239    0.8797    0.7716 

Average 0.9879    0.9761    0.9327    0.8928    0.7920  

Lock-In     

1.10 0.9905    0.9805    0.9453    0.9081    0.8130 

1.20 0.9896    0.9785    0.9392    0.9011    0.8052 

1.30     0.9892 0.9778    0.9378    0.8990    0.8039 

Average 0.9897    0.9789 0.9408    0.9027    0.8074 

Random-

Timing 

0.40      0.9887    0.9779    0.9375    0.8947    0.8048 

0.60      0.9877    0.9753    0.9301    0.8845    0.7873 

0.80      0.9871    0.9735    0.9260    0.8772    0.7727 

Average 0.9879    0.9756    0.9312    0.8855    0.7883  

Stop-

Loss        

0.70      0.9856 0.9730    0.9298    0.8908    0.7860 

0.80      0.9860    0.9742    0.9324    0.8945    0.7911 

0.90      0.9881    0.9780    0.9398    0.9055    0.8036 

Average 0.9866    0.9750    0.9340    0.8969    0.7936 

𝛼 = 0.10          

Buy-and-

Hold   

0.80    0.9923    0.9861    0.9613    0.9373    0.8730 

0.90 0.9913    0.9842    0.9556    0.9276    0.8551 

1.00     0.9922    0.9827    0.9500    0.9183    0.8417 

Average 0.9920    0.9843    0.9556    0.9278    0.8566 

Lock-In     

1.10     0.9925    0.9831    0.9440    0.8990    0.7873 

1.20     0.9929    0.9843    0.9448    0.9024    0.7936 

1.30 0.9927    0.9846    0.9453    0.9025    0.7955 

Average 0.9927 0.9840    0.9447    0.9013    0.7921 

Random-

Timing 

0.40      0.9893    0.9792    0.9390    0.8952    0.8014 

     0.60      0.9895    0.9792    0.9388    0.8981    0.8119 

0.80      0.9903    0.9801    0.9428    0.9047    0.8203 

Average 0.9897    0.9795    0.9402    0.8993    0.8112 

Stop-

Loss        

0.70 0.9907    0.9824    0.9524    0.9214    0.8298 

0.80      0.9910    0.9833    0.9523    0.9202    0.8233 

0.90      0.9922    0.9842    0.9485    0.9114    0.8037 

Average 0.9913    0.9833    0.9511    0.9177    0.8189 

 
Table 5 shows the optimality levels with 𝜎 = 0.4 and 𝜎𝑟  = 0.02, which depicts a volatile 

securities market aggravated by volatile interest rate. Such a volatile market environment 
evidently works against buy-and-hold strategies. A change of 𝛼  from 0.08 to 0.10 does not 
improve buy-and-hold much in relation to the other three. Of the four strategies, buy-and-hold 
ranks either third or fourth when 𝛼 = 0.08 and ranks third when 𝛼 = 0.10. For example, given T = 
3 years, the average optimality level, in decreasing order, is 0.9512 for lock-in, 0.9384 for stop-
loss, 0.9223 for random-timing, and 0.9203 for buy-and-hold when 𝛼 = 0.08; while the average 
optimality level is 0.9538 for stop-loss, 0.9517 for lock-in, 0.9493 for buy-and-hold, and 0.9369 for 
random-timing when 𝛼 = 0.10.  
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Table 5. Optimality levels in a volatile securities market with volatile interest rate 

 Strategy Limit 0.5-Year 1-Year 3-Year 5-Year 10-Year 

𝛼 = 0.08  

 

Buy-and-

Hold     

0.80   0.9882    0.9776    0.9301    0.8811    0.7390 

0.90     0.9867    0.9746    0.9202    0.8638    0.7043 

1.00     0.9875    0.9712    0.9107    0.8507    0.6981 

Average 0.9875    0.9745    0.9203    0.8652    0.7138 

Lock-In     

1.10 0.9916    0.9839    0.9588    0.9358    0.8726 

1.20 0.9907    0.9814    0.9489    0.9214    0.8493 

1.30     0.9904    0.9804    0.9457    0.9160    0.8389 

Average 0.9909    0.9819    0.9512    0.9244    0.8536 

Random-

Timing 

0.40      0.9885    0.9771    0.9316    0.8825    0.7692 

0.60      0.9874    0.9740    0.9212    0.8622    0.7217 

0.80      0.9867    0.9720    0.9141    0.8477    0.6915 

Average 0.9875    0.9744    0.9223    0.8641    0.7275 

Stop-

Loss        

0.70      0.9869    0.9753    0.9299    0.8918    0.7804 

0.80      0.9877    0.9768    0.9341    0.9001    0.7985 

0.90      0.9902    0.9817    0.9512    0.9306    0.8537 

Average 0.9882    0.9779    0.9384    0.9075    0.8109 

𝛼 = 0.10          

Buy-and-

Hold   

0.80    0.9921    0.9861    0.9613    0.9373    0.8730 

0.90 0.9910    0.9842    0.9556    0.9276    0.8551 

1.00     0.9921    0.9827    0.9500    0.9183    0.8417 

Average 0.9917    0.9843    0.9556    0.9278    0.8566 

Lock-In     

1.10     0.9923    0.9846    0.9570    0.9307    0.8621 

1.20     0.9928    0.9841    0.9497    0.9202    0.8432 

1.30 0.9928    0.9839    0.9483    0.9174    0.8369 

Average 0.9927 0.9842    0.9517    0.9228    0.8474 

Random-

Timing 

0.40      0.9892    0.9790    0.9376    0.8945    0.8014 

     0.60      0.9894    0.9787    0.9356    0.8892    0.8119 

0.80      0.9900    0.9795    0.9374    0.8908    0.8203 

Average 0.9895    0.9790    0.9369    0.8915    0.8112 

Stop-

Loss        

0.70 0.9907    0.9824    0.9524    0.9222    0.8292 

0.80      0.9910    0.9833    0.9523    0.9252    0.8363 

0.90      0.9922    0.9842    0.9485    0.9349    0.8541 

Average 0.9913    0.9833    0.9511    0.9274    0.8398 

 
6. Conclusion  
 
The buy-and-hold way of investing has been hailed as gospel by many professional investors for 
nearly six decades. Since the early 2000s, however, it has come under serious siege from both 
academics and practitioners who claim its ineffectiveness in the face of increasingly volatile 
markets. This research takes a theoretical approach to evaluating its effectiveness by applying a 
powerful optimality theorem to examine its effectiveness or, more specifically, its optimality level. 
In terms of optimality level, we examine how well buy-and-hold fares against three other popular 
strategies – lock-in, random-timing, and stop-loss. To make the concept of optimality level 
practically applicable, we set up a two-factor model to depict the market environment and employ 
Monte Carlo simulation to determine the optimality level of each strategy. In terms of average 
optimality level, our results show that, in general, buy-and-hold strategies perform better than the 
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other three strategies in stable market environment, but they are outperformed by lock-in and 
stop-loss strategies in volatile market environment.  

In conclusion, one important implication of this research for investment is that, in a volatile 
market environment, such as what we have seen over the past two decades, the effectiveness of 
buy-and-hold strategies is clearly in doubt.  
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