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Abstract 
 
This paper aims to generalize linear models for the multiproduct break-even point. Taking into 
consideration identified research gaps, the paper focuses on deriving formulas for determining 
the multiproduct break-even point through determination models. Different assumptions regarding 
the constancy of individual product contribution structures to total physical production volume, 
total revenue, total variable costs, and total contribution margin are taken into account. 
Additionally, connections between the obtained solutions from different models and different 
assumptions regarding the constancy of individual product contributions are established. The 
verification of the optimality of solutions obtained through different determination models is 
conducted by comparing them with solutions derived from linear programming as a benchmark. 
The developed models are tested using a case study of a multiproduct company in the metal 
processing industry. Through comparative analysis, the hypotheses concerning obtaining an 
optimal solution and the identical nature of solutions derived from the determination model and 
linear programming are examined. This paper contributes to the understanding of the multiproduct 
break-even point, providing a theoretical and practical framework for evaluation and enabling the 
application of various determination models in the context of a multiproduct situation. 
 
Keywords: CVP Analysis, Break-even Point, Multiproduct Situation, Linear Programming, 
Optimization 
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1. Introduction 
 
For effective business management, managers need to understand the relationships between 
production volume, costs, revenue, and business results generated at a given production 
capacity. This analysis is known as Cost-Volume-Profit (CVP) analysis. The break-even point, 
where the revenue covers the total operating costs at a specific activity level, is often graphically 
represented as the intersection point of total revenue and total cost functions, referred to as the 
"break-even point" (BEP). The key outcome of the break-even point analysis is determining the 
production/sales volume of individual products at which the total revenue equals the total 
operating costs. This analysis shows us the profitability threshold of the company. However, when 
interpreting the break-even point, we must consider the applied cost accounting system. 
CVP analysis and the break-even point are interconnected concepts. CVP analysis is used to 
analyze the relationship between prices, sales volume, costs, and profits of a company. The 
break-even point refers to the sales level at which the revenues cover both variable and fixed 
costs of the company. The break-even point is a critical concept in CVP analysis as it represents 
the sales volume at which the revenues equal the variable and fixed costs of the company. This 
means that the company neither makes a profit nor incurs a loss at that sales quantity. The break-
even point can be used as a fundamental indicator for assessing the profitability of the company's 
operations since the company must sell at least that many products to cover its costs. 
 The significance of using CVP and break-even point analysis for planning and decision-
making in achieving profitability in practical business operations is evidenced by numerous 
studies (Ilie and Ileana-Sorina, 2017; Lulaj and Iseni, 2018; Stoenoiu, 2018; Le et al. 2020; 
Manjunatha and Raini, 2022). On the other hand, some research has shown that CVP analysis is 
not adequate for-profit planning in individual business conditions (Wijayanti and Prasetyo, 2021) 
or has raised numerous criticisms regarding its practical value due to various underlying 
assumptions (Marjanovic et al. 2013).  
 The paper presents relational equations and corresponding linear programming models 
developed to determine the multiproduct break-even point with constant ratios of physical 
production volume, total revenue, variable costs, and individual product margins. Key finding is 
that all developed models of relational equations and linear programming models provide identical 
solutions, allowing any of the developed models to be used in the calculation process depending 
on the available data. 
 In that respect, the authors selected the subject of this paper on the grounds that not 
many relevant publications with a focus on the generalization of the linear models for multiproduct 
break-even analysis can be found in contemporary literature. Based on the identified research 
gaps, the main objective of this study is to generalize the linear models for multiproduct break-
even analysis. To achieve this objective, the following tasks need to be carried out. Derive 
formulas for determining the multiproduct break-even point using break-even analysis models 
(conditional product model, average marginal contribution model, system of linear equations 
model) under different assumptions regarding the constancy of the contribution structure of 
individual products in relation to total physical output, total revenue, total variable costs, and total 
contribution margin. Establish the relationships between the obtained solutions using different 
break-even analysis models and different assumptions regarding the constancy of the 
contribution ratios of individual products. Verify the optimality of the solutions obtained from 
different break-even analysis models, with linear programming solutions serving as the 
benchmark. Test the developed models on a case study of a multiproduct company in the metal 
processing industry. 

The paper is organized as follows. After the introduction, a brief overview of the literature 
that is applicable to the research is provided. The paper goes on to explain the methodology, after 
which the findings are discussed. Ultimately, in line with the results of the study, a brief description 
of the key conclusions is given. 
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2. Literature review and hypothesis development 
 
The original model of the CVP analysis was first presented by Hess (1903) and Maan (1903-07) 
(Stefan et al. 2008; Dash, 2019) and was based on a single-product model with assumptions of 
no uncertainty and linearity of cost and revenue functions. However, ideas for this approach 
appeared earlier in the "general equilibrium theory" of Léon Walras (Ekelund and Hébert, 2014), 
the concept of "minimum production costs" of William Petty (Roncaglia, 2005), and the concept 
of "short- run cost coverage" (Hunt and Lautzenheiser, 2011). Various CVP approaches were 
then developed for a multi-product situation characterized by the production of multiple products 
that differ from each other in terms of physical units of measure, selling prices, level of demand 
and unit variable production costs (Johnson and Simik, 1971; Atkinskon and Kaplan, 2007; 
Stevanović and Petrović, 2016).   

CVP analysis traditionally relies on the assumption that cost, and revenue functions are 
linear for a given range of activities observed in the short-term time interval. The justification for 
the application of a linear model is advocated by numerous authors, explaining that linear analysis 
is an approximation for the relevant range of activities (Gonzalez, 2001; Uhlig, 2006; Drury, 2011). 
Therefore, the literature predominantly features linear models for multiproduct break-even 
analysis (Gonzalez, 2001; Kucharski and Wywiał, 2019; Wijayanti and Prasetyo, 2021). Within 
the framework of linear models, determination models (Dubonjić et al. 2016; Enyi, 2019) and CVP 
models of linear programming are distinguished (Kucharski and Wywial, 2019). Among 
deterministic models, the most significant ones are the conditional or standard product model and 
the average weighted contribution margin or profit model (Malinić et al. 2013; Stevanović and 
Petrović, 2016). CVP linear programming models can be based on different criteria, such as 
maximization of total revenue, total profit, or minimization of variable costs (Lazzari and Moriñigo, 
2003; Kucharski and Wywiał, 2019).  

Based on the established limitations and criticism of the assumptions of linear CVP 
models (Ndaliman and Bala, 2007; Kucharski and Wywiał, 2019), alternative approaches to 
calculating the break-even point in a multi-product situation were developed. A significant group 
of methods refers to nonlinear models (Wen-Hsien et al. 1990). Unlike linear models, nonlinear 
models of determining the multiproduct break-even point take into account nonlinear relationships 
between production, costs, and revenues. According to Horal et al. (2019), their results indicate 
that for certain types of activities, there isn't a single traditional break-even point but rather a range 
of production volumes that exhibit the principles of break-even activity. By applying the theory of 
averages and deviation analysis, they calculate the minimum and maximum break-even points. 
Additionally, there are studies that have developed mathematical models for dynamic break-even 
analysis considering the time value of money in multi-product production and have examined their 
application (Ngamsomsuke and Rabten 2022; Guang-bin and Bin-li, 2007).  

In stochastic models, various types of uncertainties are distinguished, such as demand 
uncertainty (Asih and Eng, 2021), uncertainty in demand and return levels (Elfarou et al. 2022), 
uncertainty in the contribution margin and sales volume (Liang et al. 2021), uncertainty in 
production capacity planning (Asih and Eng, 2021), and others. Deterministic and stochastic 
models are often combined with optimization models. In optimization models, the multiproduct 
break-even point is determined based on different criteria of optimality, such as profit 
maximization (Briciu et al. 2013), minimization of production costs (Zhang et al. 2012), or multiple 
economic variables simultaneously (Elfarouk et al. 2022). Kucharski and Wywiał (2019) develop 
a model that aims to minimize variable production costs while considering the scale effects on 
production costs, as well as the model considers the stochastic aspect of business operations 
and aims to maximize the probability of profitability.  

A considerable number of authors have attempted to address the multiproduct break-
even point and uncertainty problem by applying a fuzzy logic-based determination system 
(Lazzari and Moriñigo, 2003; Fong-Ching, 2009; Konstantionos et al. 2009; Baral, 2016; Aslan 
and Yilmaz, 2018). The research conducted by Dohale et al. (2022) aimed at developing a multi-
product multi-period (MPMP) aggregate production plan (APP) to fulfill customers' demand in 
terms of throughput and lead time, thus achieving market competence. This study proposes an 
integrated approach that combines the fuzzy analytical hierarchy process (FAHP), multi-objective 
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linear programming (MOLP), and simulation. A multi-product multi-period (MPMP) aggregate 
production plan is applied to organizations that produce multiple products and have multiple 
planning periods.  

In addition to these models, there are also CVP models based on various cost accounting 
systems. González (2001) utilized data from activity-based costing (ABC) systems, which track 
variable and fixed costs and require the model user to formulate a contribution rule for computing 
the necessary output of each product to achieve a target profit. In the study by Zhao and Yang 
(2022), research was conducted using the Time-driven activity-based costing (TDABC) system, 
relaxing the assumptions of the traditional CVP model. Furthermore, certain studies have 
combined contemporary cost accounting systems such as activity-based costing (ABC) with the 
theory of constraints (TOC). For example, Wen-Hsien et al. (2013) aimed to assess the integration 
of ABC and TOC, along with the application of a mixed-integer programming (MIP) model, to aid 
in decision-making regarding product mix using green manufacturing technologies (GMTs). 

Lately, there has been a development in the behavioral approach which explores 
management behavior in the assessment segment of potential models, their limitations, and 
critical evaluation of their effects on decision-making (Martinović, 2019; Gubio et al. 2022). 
However, the most significant trend to be expected within the contemporary CVP approach relates 
to the utilization of various modern computer systems' performances. In the study by Thasan et 
al. (2023), an intelligent decision support system within the MCVP analysis framework was 
presented, with a created systemic platform to facilitate analysis. 

The research gap identified in the explanation of linear models for multiproduct break-
even analysis, based on the author's knowledge, pertains to comparing the solutions obtained 
from the break-even analysis model under different assumptions regarding the constancy of the 
proportions of individual products in relation to the contribution to physical output, total revenue, 
total variable costs, and contribution margin. It is necessary to analyze the solutions obtained 
from the break-even analysis model by using the conditional product model, the average weighted 
marginal contribution model, and solving systems of linear equations. Another aspect is verifying 
the optimality of the solutions obtained using the defined break-even analysis models. 

Based on the previous discussion, we propose two research hypotheses: 
H1: The break-even analysis model with constant ratios in a multiproduct scenario 

facilitates the achievement of optimal solutions. 
H2: Optimal solutions of the linear programming model for multiproduct break-even point 

with constant ratios are identical to solutions obtained using models of relational equations. 
To achieve the defined objectives, tasks, and hypotheses, the key methods will involve 

modeling and comparative analysis. The generalization of the analyzed models will primarily rely 
on mathematical proof methods and empirical verification. 

 
3. Mathematical models of multiproduct break-even point 
3.1. Definition of multiproduct break-even point 
 
Assuming that the production/sales mix is predetermined and constant, the multiproduct break-
even point represents the combination of production volumes for n individual products in a given 
period where the total revenue equals the total costs. The equation for the multiproduct break-
even point is as in Equations (1) or (2). 
 

∑(𝑝𝑖 − 𝑤𝑖) ∙ 𝑞𝑖 = 𝐹

𝑛

𝑖=1

 (1) 

∑ 𝑚𝑖  ∙ 𝑞𝑖 = 𝐹

𝑛

𝑖=1

 (2) 

 
In these equations, 𝑞𝑖 is the production volume of the i-th product in a given period.                                                                                                          

𝑝𝑖 is the unit selling price of the i-th product. 𝑤𝑖 is the unit variable cost of the i-th product. 𝐹 is the 
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total fixed costs in a given period. 𝑚𝑖 = 𝑝𝑖 − 𝑤𝑖  is the unit margin achieved by producing/selling 

the i-th product,𝑖 = 1, 𝑛̅̅ ̅̅̅ . 
In an n-dimensional vector space 𝑅𝑛, Equation (1) represents a hyperplane. Since 𝑞𝑖 ≥ 0 

for 𝑖 = 1, 𝑛̅̅ ̅̅̅ , this hyperplane is constrained to a hyperpolygon whose extreme points intersect the 
n-coordinate axes and the hyperplane defined by Equation (1). The values of the extreme points 
of the hyper polygon located on the i-th coordinate axis can be calculated as  𝑞𝑖

𝑒 = 𝐹 𝑚𝑖⁄  for 𝑖 =
1, 𝑛̅̅ ̅̅̅. This hyperpolygon exhibits the properties of a convex set and represents the set of feasible 
solutions (Zahirović et al. 2008; Winston, 2004). This means that every point belonging to this 
hyper polygon represents a possible multiproduct break-even point. In other words, any 

combination of production volume values   𝑞𝑖 ≥ 0, for 𝑖 = 1, 𝑛̅̅ ̅̅̅, that satisfies Equation (1) 
represents a multiproduct break-even point. Therefore, the number of possible multiproduct 
break-even points is infinite. 

To determine the number of suitable multiproduct decision points, additional constraints 
or assumptions need to be introduced. These commonly include considering a relevant range of 
activities and assuming a constant product mix (Malinić et al. 2013; Stevanović and Petrović, 
(2016). Production and market constraints can also be considered, among others.  

In the models under consideration here, an additional assumption regarding the 
constancy of relationships has been introduced: the physical volume of production of individual 
products (Model 1), the share of total revenues of individual products (Model 2), the proportion of 
variable costs of individual products in total variable costs (Model 3), and the share of total 
margins of individual products (Model 4). 
 
3.2. Constant proportions model of individual product physical volume 
 
The coverage point model with constant relationships of physical production volume (Model 1) is 
based on the multiple proportion shown in Equation (3). 
 

𝑞1: 𝑞2: ⋯ : 𝑞𝑛 = 𝑘1
𝑣: 𝑘2

𝑣: ⋯ : 𝑘𝑛
𝑣 (3) 

 
where 𝑘𝑖

𝑣  is the coefficient of proportionality for the production volume of the i-th product. 

 
3.2.1. Determination model of the break-even point based on constant relationships of 
the physical production volume of individual products 
 
By reducing the production volume of the i-th product to the production volume of a conditional 
(standard) product using the coefficients of proportionality from Equation (3), we obtain Equation 
(4). 
 

𝑞𝑖 = 𝑘𝑖
𝑣 ∙ 𝑞 (4) 

 
where q represents the production volume of the standard product. By substituting Equation (4) 
into (1) and solving for the unknown variable q, we obtain Equation (5). 
 

𝑞 =
𝐹

∑ 𝑘𝑖
𝑣(𝑝𝑖 − 𝑤𝑖)

𝑛
𝑖=1

 (5) 

 
Finally, the model of relational equations for the production volume of the i-th product at 

the break-even point is obtained by substituting Equation (5) into Equation (4), we obtain Equation 
(6). 
 

𝑞𝑖 =
𝑘𝑖

𝑣 ∙ 𝐹

∑ 𝑘𝑗
𝑣(𝑝𝑗 − 𝑤𝑗)𝑛

𝑗=1

 (6) 

 



 
 
 

Zahirović et al. / Eurasian Journal of Business and Management, 12(1), 2024, 1-14 
 
 
 

6 

 

This formula can be used to calculate the break-even point under constant relationships 
of the physical production volume for individual products. 
 
3.2.2. Optimization model with constant relationships of individual product production 
volumes 
 
A linear programming model with constant relationships of individual product production volumes 
can have total revenue as the objective function, while the constraints are based on the 
fundamental break-even relation (1) and n-1 constraints derived from Equation (3). The linear 
programming model is formulated as follows: 
 

 
Maximization: 𝑅 =

∑ 𝑝𝑖
𝑛
𝑖=1 𝑞𝑖 

(7) 

 
Subject to: 

∑(𝑝𝑖 − 𝑤𝑖) ∙ 𝑞𝑖 = 𝐹

𝑛

𝑖=1

 (8) 

𝑘𝑖+1
𝑣 𝑞𝑖 − 𝑘𝑖

𝑣𝑞𝑖+1 = 0 for  𝑖 = 1, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 

𝑞𝑖 ≥ 0 
(9) 

Since the linear programming model has n equations in the constraints, solving the 
system of n linear equations using one of the methods yields solutions for multiproduct break-
even points that are equal to the solution given in Equation (6). In this n-dimensional point, the 
objective function reaches its minimum. This means that the solution obtained by the break-even 
analysis model is also an optimal solution, considering the assumption of constant relationships 
of individual product production volumes, which will be the subject of empirical testing. 
 
3.3. Constant proportions model of total revenue for individual products 
 
The model of the constancy of relationships of total revenues for individual products (Model 2) is 
based on the following multiple proportion which is Equation (10). 
 

𝑝1𝑞1: 𝑝2𝑞2: ⋯ : 𝑝𝑛𝑞𝑛 = 𝑘1
𝑟: 𝑘2

𝑟: ⋯ : 𝑘𝑛
𝑟  (10) 

 
where is 𝑘𝑖

𝑟 – coefficient of proportionality of the total revenue of the i-th product. 

 
3.3.1. Determination model of the break-even point with constant relationships of total 
revenue for individual products 
 
Using a similar procedure as in Model 1 the total revenue of the i-th product is reduced to the total 
revenue of the conditional (standard) product by utilizing the coefficients of proportionality from 
Equation (10), resulting in the following expression that is Equation (11). 
 

𝑝𝑖𝑞𝑖 = 𝑘𝑖
𝑟𝑝𝑞 (11) 

 
where pq represents the total revenue of the standard product at the standard price. Solving 
Equation (11) for 𝑞𝑖 and substituting it into Equation (1) yields to Equation (12). 
 

𝑝𝑞 =
𝐹

∑
𝑘𝑗

𝑟

𝑝𝑗
(𝑝𝑗 − 𝑤𝑗)𝑛

𝑗=1

 
(12) 
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By using relations (11) and (12), the expression for calculating the break-even point of 
the i-th product under constant relationships of the share of total revenues of individual products, 
we obtained a model of relational equation as in Equation (13). 

 

𝑞𝑖 =

𝑘𝑖
𝑟

𝑝𝑖
∙ 𝐹

∑
𝑘𝑗

𝑟

𝑝𝑗
(𝑝𝑗 − 𝑤𝑗)𝑛

𝑗=1

, for 𝑖 = 1, 𝑛̅̅ ̅̅̅ (13) 

 
3.3.2. Optimization model with constant relationships of individual product total revenue 
 
The linear programming model, with constant relationships of individual product total revenue, 
includes the same objective function (7) and constraint (8). The remaining n-1 constraints are 
derived from the proportion (10) in the form of Equation (14). 
 

𝑘𝑖+1
𝑟 𝑝𝑖𝑞𝑖 − 𝑘𝑖

𝑟𝑝𝑖+1𝑞𝑖+1 = 0 for  𝑖 = 1, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 

𝑞𝑖 ≥ 0 
(14) 

 
Similar to the previous model, the feasible solution domain is represented by a point in 

an n-dimensional space that is equal to the solution (13), which will be empirically tested. 
 
3.4. Constant proportions model of total variable costs for individual products 
 
The model of constant relationships of total variable costs for individual products (Model 3) is 
based on the following multiple proportion presented below as Equation (15). 
 

𝑤1𝑞1: 𝑤2𝑞2: ⋯ : 𝑤𝑛𝑞𝑛 = 𝑘1
𝑤: 𝑘2

𝑤: ⋯ : 𝑘𝑛
𝑤 

 
(15) 

where 𝑘𝑖
𝑤 – the coefficient of proportionality of total variable costs for the i-th product. 

 
3.4.1. Determination model of break-even point for constant ratios of total variable costs 
of individual products 
 
By applying a similar procedure as in Model 2, the total variable costs of the i-th product are 
reduced to the variable costs of the conditional (standard) product using the coefficients of 
proportionality from equation (15), resulting in Equation (16). 
 

𝑤𝑖𝑞𝑖 = 𝑘𝑖
𝑤𝑤𝑞 (16) 

 
where 𝑤𝑞 represents the total variable costs of the standard product at the standard variable cost. 
By solving Equation (16) for qi and substituting it into Equation (1), we obtain Equation (17). 
 

𝑤𝑞 =
𝐹

∑
𝑘𝑗

𝑤

𝑤𝑗
(𝑝𝑗 − 𝑤𝑗)𝑛

𝑗=1

 
(17) 

 
By using relations (16) and (17), we obtain the model of relation equation for calculating 

the break-even point in the case of constant ratios of total variable costs of individual products 
are shown below in Equation (18). 
 

𝑞𝑖 =

𝑘𝑖
𝑤

𝑤𝑖
∙𝐹

∑
𝑘𝑗

𝑤

𝑤𝑗
(𝑝𝑗−𝑤𝑗)𝑛

𝑗=1

, for 𝑖 = 1, 𝑛̅̅ ̅̅̅. (18) 
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3.4.2. Optimization model of constant relationships of total variable costs of individual 
products 
 
A linear programming model, with constant relationships of total variable costs of individual 
products, includes the objective function: 
 

Minimize: 𝑊 = ∑ 𝑤𝑖
𝑛
𝑖=1 𝑞𝑖 . (19) 

 
In addition to the constraint (1), n-1 constraints would be introduced, obtained from the 

proportion (15), in the form of Equation (20). 
 

𝑘𝑖+1
𝑤 𝑤𝑖𝑞𝑖 − 𝑘𝑖

𝑤𝑤𝑖+1𝑞𝑖+1 = 0 for  𝑖 = 1, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 

𝑞𝑖 ≥ 0. 
(20) 

 
3.5. The model of constant relationships of the overall margin for individual products 
 
This model is based on the assumption of the constancy of total marginal revenues for individual 
products (Model 4), and the multiple proportion can be written as Equation (21). 
 

𝑚1𝑞1: 𝑚2𝑞2: ⋯ : 𝑚𝑛𝑞𝑛 = 𝑘1
𝑚: 𝑘2

𝑚: ⋯ : 𝑘𝑛
𝑚. (21) 

 
where is 𝑘𝑖

𝑚 – the coefficient of proportionality of the total margin of the i-th product. 

 
3.5.1. Determination model of break-even point with constant proportions of total margins 
for individual products 

Using a similar approach as in models 2 and 3, the total margin of the i-th product is transformed 
into the margin of the conditional (standard) product by utilizing the coefficients of proportionality 
from equation (21), resulting in Equation (22). 
 

𝑚𝑖𝑞𝑖 = 𝑘𝑖
𝑚𝑚𝑞. (22) 

 
where 𝑚𝑞 is the total margin of the standard product with the standard margin. Through a similar 
procedure as in models 2 and 3, we obtain the model of relational equation for multiproduct break-
even point in the case of constant proportions of total margins for individual products which brings 
us to Equation (23). 
 

𝑞𝑖 =

𝑘𝑖
𝑚

𝑚𝑖
∙𝐹

∑
𝑘𝑗

𝑚

𝑚𝑗
(𝑝𝑗−𝑤𝑗)𝑛

𝑗=1

, for 𝑖 = 1, 𝑛̅̅ ̅̅̅. (23) 

 
3.5.2. Optimization model of constant relationships of total margins of individual products 

A linear programming model, considering constant relationships of total margins of individual 
products, includes the objective function Equation (24). 
 

Maximize: 𝑀 = ∑ 𝑚𝑖
𝑛
𝑖=1 𝑞𝑖 (24) 

 
In addition to constraint (1), n-1 constraints derived from the proportion (21) would be 

introduced in the following form of Equation (25). 
 

𝑘𝑖+1
𝑚 𝑚𝑖𝑞𝑖 − 𝑘𝑖

𝑚𝑚𝑖+1𝑞𝑖+1 = 0 for  𝑖 = 1, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 

𝑞𝑖 ≥ 0. 
(25) 
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Based on the derived set of relational equations and the linear programming model, it can 
be observed that all developed multiproduct break-even point models with constant ratios exhibit 
characteristics of deterministic and linear models based on traditional cost accounting systems. 
Due to their generality, the developed models can be effectively applied to any multiproduct 
situation with stable market conditions and well-known operational environments, resulting in 
objective and precise determination of the break-even point. 
 
4. Results and discussion 
 
To test the analytical capabilities of the developed multiproduct break-even point models with 
constant ratios and to verify the set hypotheses, an empirical research methodology was applied 
based on the analysis of a selected case. This methodology involves selecting a specific company 
and constructing an analytical system related to the necessary input data. 
 
4.1. Data  
 
The chosen company operates in the metal processing industry and specializes in the production 
of containers. The primary reason for selecting this particular case was the convenience and 
accessibility of the necessary internal data (often considered proprietary), as well as assistance 
in rapidly assessing the operating conditions of the specific company. 

The second reason is related to evaluating the fulfilment of assumptions of the linear and 
deterministic models with constant ratios developed in the study. These would be the following 
operating conditions of the selected company: a known a priori product mix with longer life cycles, 
production capacities, and applied technology allowing flexibility in production operations, the 
container market is not prone to sudden shocks and significant changes, thus input and finished 
product market prices are relatively predictable, the company's accounting system enables 
efficient cost classification, and the company has no extraordinary, financial, or capital revenues. 

The company produces a total of seven models of metal containers, labelled from K1 to 
K7. Financial data has been extracted from the company's financial records. The financial and 
quantitative values pertain to a one-year period. The total fixed costs amounted to EUR 
7,608,411. The total variable costs amounted to EUR 8,243,553. The total revenues amounted 
to EUR 17,137,259. Production volume from K1 to K7, respectively, amounted to 2,869; 2,294; 
100; 284; 36; 390; and 100.  
 
4.2. Results of hypothesis testing 
 
In Table 1, it has been demonstrated that across all models of proportionality ratios, an optimal 
result exists. This establishes the precise multi-product break-even point for this enterprise. 
 

Table 1.  Model testing - multiproduct break-even point analysis 

Description 
Product type – metal container 

K1 K2 K3 K4 K5 K6 K7 

Unit selling price (EUR) - pi 2,525 2,585 1,686 3,635 5,847 4,850 6,550 

Unit variable costs (EUR) - wi 1,263 1,230 1,440 2,019 2,045 1,949 2,209 

Margin (EUR) - mi = pi − wi 1,262 1,355 246 1,616 3,802 2,901 4,341 

Model 1 ki
v 79.69 63.72 2.78 7.89 1.00 10.83 2.78 

Model 2 ki
r 42.97 35.17 1.00 6.12 1.25 11.22 3.88 

Model 3 ki
w 147.18 126.36 1.00 18.66 5.56 45.99 17.65 

Model 4  ki
m 49.22 39.33 1.96 7.79 1.00 10.32 3.00 

qi  (multiproduct break-even point) 2449 1958 85 242 31 333 85 

qi  (optimal result) 2449 1958 85 242 31 333 85 

Source: Author's own findings. 

 
In the penultimate row of the preceding table, 𝑞𝑖 (multiproduct break-even point), the 

results of calculating the multiproduct break-even point based on the relational models (6), (13), 
(18), and (23) are provided, which are identical for all models. The last row of the table,  𝑞𝑖 (optimal 
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result), contains the solutions of the linear programming models given in sections (3.2.2), (3.3.2), 
(3.4.2), and (3.5.2). The optimal solutions of all developed linear programming models are 
identical. It is evident that the solutions of the relational models and the linear programming 
models are identical. 

In the case of a target function value of 14,621,192 EUR, representing the minimum 
revenue required to cover costs, all four models have shown that the optimal multi-product product 
structure with specified production quantities is identical. The quantity of products per product 
type is presented in the table ( 𝑞𝑖): 2449 (K1), 1958 (k2), 85 (K3), 242 (K4), 31 (K5), 333 (K6) and 
85 (K7). Total margin at the multiproduct break-even point is EUR 7,608,590. Total value of 
variable costs at the multiproduct break-even point is EUR 7,012,602. 
 
4.3. Discussion of research results and research limitations 

 
In this study, which evaluated linear models of multiproduct break-even analysis, it has been 
confirmed that these models, despite being known for several decades, can still be researched, 
and improved upon. The models of relational equations based on weighted-average unit 
contribution margin are already known in the literature (Potkany and Krajcirova, 2015; Hilton, 
2008). However, in this study, we demonstrated that it is possible to generalize the modeling of 
the multiproduct break-even point with constant ratios, considering each of the individual 
elements of the multiproduct break-even point: the physical production volume, total revenue, 
variable costs, and individual product margins. Although the models of linear programming for 
multiproduct break-even points are also known in the literature (Kucharski and Wywial, 2019), the 
generalized approach presented in this study has shown that it is possible to develop linear 
programming models considering all potential criteria relevant to multiproduct situations: the 
physical production volume, total revenue, variable costs, and individual product margins. 

It has been demonstrated that solutions of linear models analyzing the profitability of 
multiple products with constant contribution structures have consistent effects, irrespective of their 
nature. Based on empirical research, the key finding is that all developed models of relational 
equations and linear programming models based on constant ratios provide identical solution
  s. Thus, any of the models developed in the study can be used for calculating the 
multiproduct break-even point depending on the available data. Consequently, the research 
hypotheses are empirically confirmed. This implies that multiproduct break-even point models 
with constant ratios enable obtaining optimal solutions, regardless of whether relational or 
optimization models are used, and that the solutions of linear programming models and models 
of relational equations are identical. This suggests that the derived formulas can be used 
regardless of the assumption of the constancy of individual product contribution structures, 
thereby expanding the theoretical and methodological insights of deterministic and linear models 
based on traditional cost accounting (Potkany and Krajcirova, 2015; Hilton, 2008; Kucharski and 
Wywial, 2019). 

Although our focus in obtaining solutions was on the physical production volume of 
individual products in a multiproduct break-even point, the results can easily be extended to the 
financial aspect. This includes calculating total revenue, variable costs, and contribution margin 
both per product and overall. These enhancements in the models contribute to understanding and 
analyzing multiproduct break-even points, enabling more comprehensive decision-making and 
planning in the context of production and financial management. 

However, it is important to acknowledge the limitations of this research. The study 
focused on linear models of profitability analysis for multiple products with constant contribution 
structures. The findings may not be directly applicable to cases with different contribution 
structures or nonlinear relationships (Martinović, 2019). Additionally, the research assumed 
constant ratios and did not account for potential fluctuations or uncertainties in market conditions, 
cost structure, or demand. Future research could explore more complex scenarios and consider 
dynamic factors to provide a more comprehensive understanding of multiproduct profitability 
analysis. 
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5. Conclusion 
 
This scientific paper investigated and analyzed linear models of the multiproduct break-even point 
with constant relationships between total variable costs and the total margin of individual products. 
The research results confirm that these models represent optimal solutions and are applicable in 
practical contexts. The key contribution of this research lies in providing clear formulas and 
models for decision-making regarding the utilization of production capacities, selection of the 
production mix, and determination of the production volume for individual products. Their practical 
application enables companies to efficiently manage their production processes and optimize 
their profitability. The implementation of these models demonstrates that they are user-friendly 
and interpretable, making them valuable tools for decision-making in a business environment. 
Their application allows companies to assess the current business situation, predict the impact of 
different decisions on profitability, and identify optimal strategies to achieve desired outcomes. 

The significance of this scientific paper is multifaceted, encompassing practical 
applicability, enhancement of the analytical foundation, and contribution to the theoretical 
understanding of the multiproduct break-even point. Through the application of linear models and 
analytical approaches, the research builds upon existing literature and theory in this field. By 
solving specific problems and testing the models on a practical example of metal container 
production, the research confirms that previously developed models and formulas can be 
successfully applied in real-life situations. Overall, the results of this research contribute to the 
understanding and application of linear models for decision-making in the context of multiproduct 
break-even analysis. The simplicity and effectiveness of these models make them valuable tools 
for businesses in assessing their production strategies and optimizing their profitability. 

Further research could explore the applicability of these models to other types of 
production environments, such as heterogeneous production or nonlinear relationships between 
variables. Additionally, incorporating risk and uncertainty factors into the models could provide a 
more comprehensive decision-making framework. Multidisciplinary research encompassing the 
fields of accounting, behavioral economics, computer science, operations research, and 
information systems is required. Special focus could involve the most intelligent trends in machine 
learning and artificial intelligence. 
 
 
References 
 
Asih, H. and Eng, C., 2021. Cost-volume-profit analysis for uncertain capacity planning: a case 

study paper. Proceedings of the Second Asia Pacific International Conference Industrial 
Engineering and Operations Management, pp. 14-16.  

Aslan, T. and Yilmaz, E., 2018. Cost-volume profit analysis in uncertainty conditions using fuzzy 
logic method. Journal of Business Research-Türk, 10(2), pp. 534-553. 
https://doi.org/10.20491/isarder.2018.443  

Atkinson, A., Kaplan, R., Matsumura, E. M., and Young, M., 2007. Management accounting. 5th 
ed. New Jersey: Prentice Hall Pearson Education International. 

Baral, G., 2016. Cost–value–profit analysis and target costing with fuzzy logic theory. 
Mediterranean Journal of Social Sciences, 7(2), p. 21. 
https://doi.org/10.5901/mjss.2016.v7n2p21  

Briciu, S., Căpușneanu, S., and Căprariu, A. E., 2013. Profit optimization during crisis periods. 
Theoretical and Applied Economics, 6(583), pp. 61-76. 

Dash, M., 2019. Exploring the applicability of the CVP model in the Indian cement sector. Asian 
Journal of Pure and Applied Mathematics, 1(1), pp. 8-15. 

Dohale, V., Ambilkar, P., Gunasekaran, A., and Bilolikar, V., 2022. A multi-product and multi-
period aggregate production plan: a case of automobile component manufacturing firm. 
Benchmarking: An International Journal, 29(10), pp. 3396-3425. 
https://doi.org/10.1108/BIJ-07-2021-0425  

Drury, C., 2011. Management accounting for business decisions. London: Thomson Learning.  

https://doi.org/10.20491/isarder.2018.443
https://doi.org/10.5901/mjss.2016.v7n2p21
https://doi.org/10.1108/BIJ-07-2021-0425


 
 
 

Zahirović et al. / Eurasian Journal of Business and Management, 12(1), 2024, 1-14 
 
 
 

12 

 

Dubonjić, R., Milanović, D., and Misita, M., 2016. Inženjerska ekonomija. Mašinski fakultet, 
Beograd. [Engineering Economics. Belgrade: Faculty of Mechanical Engineering,  
University of Belgrade] 

Ekelund, R. B. and Hébert, R. F., 2014. A history of economic theory and method. 6th ed. Long 
Grove, Illinois: Waveland Press, Inc.  

Elfarouk, O., Wong, K., and Wong, W., 2022. Multi-objective optimization for multi-echelon, multi-
product, stochastic sustainable closed-loop supply chain. Journal of Industrial and 
Production Engineering, 39(2), pp. 109-127. 
https://doi.org/10.1080/21681015.2021.1963338  

Enyi, P. E., 2019. Joint products CVP analysis – time for methodical review. The Asian Institute 
of Research Journal of Economics and Business, 2(4), pp. 1288-1297. 
https://doi.org/10.31014/aior.1992.02.04.168  

Fong-Ching, Y., 2009. The use of a fuzzy logic-based system in cost-volume-profit analysis under 
uncertainty. Expert Systems with Applications, 36(2), pp. 1155-1163. 
https://doi.org/10.1016/j.eswa.2007.11.025  

González, L., 2001. Multiproduct CVP analysis based on contribution rules. International Journal 
of Production Economics, 73(3), pp. 273-284. https://doi.org/10.1016/S0925-
5273(01)00116-5  

Guang-bin, L. and Bin-li, S., 2007. Multi-product dynamic break-even analysis and its application. 
International Conference on Management Science and Engineering, pp. 2164-2169. 
https://doi.org/10.1109/ICMSE.2007.4422160  

Gubio, Z. D., Mustapha, L. O., and Agbi, S. E., 2022. The effect of break-even-point analysis in 
decision making in some selected block industries within Kaduna Metropolis. Journal of 
Research in Business and Management, 10, pp. 22-32. 

Hess, H., 1903. Manufacturing: capital, cost, profit, and dividends. Engineering Magazine. pp. 
892 898. 

Hilton, W. R., 2008. Managerial accounting: creating value in a dynamic business environment. 
7th ed. New York: McGraw-Hill/Irwin. 

Horal, L., Shyiko, V. and Yaroshenko, O., 2019. Modeling break-even zone using the integral 
methods. Proceedings of the 6th International Conference on Strategies, Models and 
Technologies of Economic Systems Management, pp. 172-176 
https://doi.org/10.2991/smtesm-19.2019.34  

Hunt, E. K. and Lautzenheiser. M., 2011. History of economic thought: a critical perspective. 
Armonk: M.E. Sharpe.  

Ilie, R. and Ileana-Sorin, R., 2017. Cost-volume-profit analysis – an instrument of managerial 
control of the economic entities in the extractive industry. “Ovidius” University Annals, 
Economic Sciences Series, 2, pp. 627-632. 

Johnson G. J. and Simik, S. S., 1971. Multiproduct C-V-P analysis under uncertainty. Journal of 
Accounting Research, 9(2), pp. 278-286. https://doi.org/10.2307/2489934  

Konstantinos, A. Chrysafis, and Basil, K., Papadopoulos., 2009. Cost–volume–profit analysis 
under uncertainty: a model with fuzzy estimators based on confidence 
intervals. International Journal of Production Research, 47(21), pp.  5977-5999.  
https://doi.org/10.1080/00207540802112660  

Kucharski, R. and Wywiał, J., 2019. Optimization of the break-even point for non-homogeneous 
products sales. Zeszyty Teoretyczne Rachunkowości, 101(157), pp. 133−148. 
https://doi.org/10.5604/01.3001.0013.0759  

Lazzari, L. L. and Moriñigo, M. S., 2003. Analysis of multi-product break-even with uncertain 
information. EUSFLAT Conf., pp. 456-460. 

Le, O. T. T., Tran, P. T. T., Tran, T. V., and Nguyen, C. V., 2020. Application of cost-volume-profit 
analysis in decision-making by public universities in Vietnam. The Journal of Asian 
Finance, Economics and Business, 7(6), pp. 305–316. 
https://doi.org/10.13106/jafeb.2020.vol7.no6.305  

Liang, H., Guiffrida, A. L, Liu, Z, Patuwo, B.E., and Shanker, M. A., 2021. Generalized stochastic 
cost–volume–profit model. Systems, 9(4)81, pp. 1-14. 
https://doi.org/10.3390/systems9040081  

https://doi.org/10.1080/21681015.2021.1963338
https://doi.org/10.31014/aior.1992.02.04.168
https://doi.org/10.1016/j.eswa.2007.11.025
https://doi.org/10.1016/S0925-5273(01)00116-5
https://doi.org/10.1016/S0925-5273(01)00116-5
https://doi.org/10.1109/ICMSE.2007.4422160
https://doi.org/10.2991/smtesm-19.2019.34
https://stec.univ-ovidius.ro/html/anale/ENG/2017-2/Section%20V/25.pdf
https://doi.org/10.2307/2489934
https://doi.org/10.1080/00207540802112660
https://doi.org/10.5604/01.3001.0013.0759
https://doi.org/10.13106/jafeb.2020.vol7.no6.305
https://doi.org/10.3390/systems9040081


 
 
 

Zahirović et al. / Eurasian Journal of Business and Management, 12(1), 2024, 1-14 
 
 
 

13 

 

Lulaj, E. and Iseni, E., 2018. Role of analysis CVP (cost-volume-profit) as important indicator for 
planning and making decisions in the business environment. European Journal of 
Economics and Business Studies, 4(2), pp. 99-114. 
https://doi.org/10.26417/ejes.v4i2.p104-120  

Malinić, D., Milićević, V. and Stevanović, N., 2013. Upravljačko računovodstvo. Ekonomski 
fakultet, Beograd. [Managerial accounting. Belgrade: faculty of economics and business, 
University of Belgrade] 

Manjunatha, T. and Rajini, H. C., 2022. Analysis of cost volume profit analysis in private hospitals 
in India: evidence from city central hospital PVT. LTD. Asian Journal of Advances in 
Research, 15(1), pp. 35-38.  

Mann, J., 1903-07. On cost or expenses. Encyclopedia of Accounting, In: G. Lisle ed. Edinburgh: 
William Green & Sons.  

Marjanovic, P., Riznic, D., and Ljutic, B., 2013. Validity of information based on (CPV) analysis 
for the needs of short-term business decision making. Annals of the Oradea University 
Fascicle of Management and Technological Engineering, 2, pp. 131-139. 
https://doi.org/10.15660/AUOFMTE.2013-2.2926  

Martinović, D., 2019. Advantages and limitations of linear and nonlinear break-even models. 
Ekonomski horizonti, 21(3), pp. 221-238. https://doi.org/10.5937/ekonhor1903229M  

Ndaliman, M. B. and Bala, K. C., 2007. Practical limitations of break-even theory Semantic 
Scholar, [online] Available at: <https://www.semanticscholar.org/paper/Practical-
Limitations-of-Break-Even-Theory-Ndaliman-
Bala/dbf39db42767508cd56039ab4235081784f61b70> [Accessed on 22 November 
2024]. 

Ngamsomsuke, K. and Rabten, W., 2022. New basic break-even analysis models for multiple 
product firms. International Conference on Decision Aid Sciences and Applications, pp. 
986-990. https://doi.org/10.1109/DASA54658.2022.9765215  

Potkany, M. and Krajcirova, L., 2015. Quantification of the volume of products to achieve the 
break-even point and desired profit in non-homogeneous production. Procedia 
Economics and Finance, 26, pp. 195-201. https://doi.org/10.1016/S2212-5671(15)00811-
4  

Roncaglia, A., 2005. The wealth of ideas: a history of economic thought. Cambridge: Cambridge 
University Press. https://doi.org/10.1017/CBO9780511492341  

Stefan, D., Stefan, A. B., Savu, L., Sumandea, R., and Comes, C. A., 2008. A cost-volume-profit 
model for a multiproduct situation with variable production structure. EurOPT-2008 
International Conference Neringa, pp. 349-352.  

Stevanović, N. and Petrović, T. M,.2016. Upravljačko računovodstvo. Brčko: Ekonomski fakultet 
Brčko. [Managerial accounting. Brcko: The Faculty of Economics Brcko, University of 
East Sarajevo] 

Stoenoiu, C. E., 2018.  Sensitivity of indicators used in cost-volume-profit analysis. MATEC Web 
of Conferences. https://doi.org/10.1051/matecconf/201818404003  

Thasan, S., Rahman, A., Subramanian, P., and Williams, M. J., 2023. An intelligent decision 
support system to aid profit planning in manufacturing companies. International Journal 
of Intelligent Systems and Applications in Engineering, 11(4), pp. 345-356. 

Uhlig, H., 2006. Approximate solutions to dynamic models - linear methods. Discussion Paper 
No. 2006-030.  https://doi.org/10.2139/ssrn.921357  

Wen-Hsien, T, Hui-Chiao, C., Jun-Der, L., Yao-Chung, C., and Lin, T. W., 2013. A product-mix 
decision model using green manufacturing technologies under activity-based costing. 
Journal of Cleaner Production, 57, pp. 178-187. 
https://doi.org/10.1016/j.jclepro.2013.04.011  

Wijayanti, A. and Prasetyo, B. M. S., 2021. Cost-volume-profit analysis and linear programming 
as profit planning instruments. SOCA: Journal Sosial Ekonomi Pertanian, 15(1), pp. 55-
65.  https://doi.org/10.24843/SOCA.2021.v15.i01.p05  

Winston L. W., 2004. Operations research: applications and algorithms. Wisconsin: Thomson 
Brooks/Cole. 

https://doi.org/10.26417/ejes.v4i2.p104-120
https://doi.org/10.15660/AUOFMTE.2013-2.2926
https://doi.org/10.5937/ekonhor1903229M
https://doi.org/10.1109/DASA54658.2022.9765215
https://doi.org/10.1016/S2212-5671(15)00811-4
https://doi.org/10.1016/S2212-5671(15)00811-4
https://doi.org/10.1017/CBO9780511492341
https://doi.org/10.1051/matecconf/201818404003
https://doi.org/10.2139/ssrn.921357
https://doi.org/10.1016/j.jclepro.2013.04.011
https://doi.org/10.24843/SOCA.2021.v15.i01.p05


 
 
 

Zahirović et al. / Eurasian Journal of Business and Management, 12(1), 2024, 1-14 
 
 
 

14 

 

Zahirović, S., Kozarević, S., and Okičić, J., 2008. Kvantitativne metode u odlučivanju I. Tuzla: 
Harfo-graf d. o. o. [Quantitative methods in decision making I. Tuzla: harfo-graf d. o. o.] 

Zhang, Y., Li, W., Yang, J., Chai, D., Qiu, S., and Li, J., 2012. A techno-economic optimization 
model for aluminium electrolysis production. Light Metals 2012. Cham: Springer. 
https://doi.org/10.1007/978-3-319-48179-1_122  

Zhao, L. and Yang. Z., 2022. Time-driven activity-based cost expansion model. Journal of 
Engineering, Project, and Production Management, 12(2), pp. 116-125. 
https://doi.org/10.32738/jeppm-2022-0011  

 

https://doi.org/10.1007/978-3-319-48179-1_122
https://doi.org/10.32738/jeppm-2022-0011

